

A158265


G.f.: A(x) = exp( Sum_{n>=1} 2*sigma(n,n+1)*x^n/n ).


0



1, 2, 11, 74, 697, 8002, 115158, 1949640, 38662510, 872245634, 22150393253, 623661939852, 19296665400632, 650198159192554, 23700604926216759, 928939297013294294, 38956230043045053042, 1740248411222193973416
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Definition: sigma(n,n+1) = Sum_{dn} d^(n+1): [1,9,82,1057,15626,...].


LINKS

Table of n, a(n) for n=0..17.


EXAMPLE

G.f.: A(x) = 1 + 2*x + 11*x^2 + 74*x^3 + 697*x^4 + 8002*x^5 +...
log(A(x)) = 2*x + 18*x^2/2 + 164*x^3/3 + 2114*x^4/4 + 31252*x^5/5 +...


PROG

(PARI) a(n)=polcoeff(exp(sum(m=1, n, 2*sigma(m, m+1)*x^m/m)+x*O(x^n)), n)


CROSSREFS

Cf. A158095, A023881.
Sequence in context: A058789 A212028 A324445 * A321387 A309146 A198088
Adjacent sequences: A158262 A158263 A158264 * A158266 A158267 A158268


KEYWORD

nonn


AUTHOR

Paul D. Hanna, Mar 29 2009


STATUS

approved



